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Abstract. We introduce the graded bialgebra deformations, which explain the lifting
method of Andruskiewitsch and Schneider. We also relate these graded bialgebra defor-
mations with the corresponding graded bialgebra cohomology groups, which is the graded
version of the one due to Gerstenhaber and Schack.
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1 Introduction

The classification of finite-dimensional pointed Hopf algebras is a basic problem in
the theory of Hopf algebras. It is well known that any pointed Hopf algebra H has a
coradical filtration, with respect to which one associates a coradically-graded Hopf
algebra grH. Following Andruskiewitsch and Schneider, the classification problem
can be divided into two parts. One is the classification of all coradically-graded
pointed Hopf algebras, and the other is to find all possible pointed Hopf algebras
H with grH isomorphic to a given coradically-graded pointed Hopf algebra. The
second part is just the lifting method in [1] and [2]. One of our motivations is to
relate the lifting method with a certain bialgebra deformation theory.

The deformation theory for algebras was initiated by Gerstenhaber in [4], and
its analogue for bialgebras appeared first in [5] (see also [6] and [10]). Inspired by
the graded algebra deformation theory in [3] and [11], we develop in this paper
the theory of graded bialgebra deformations and their corresponding cohomology
groups. Moreover, this deformation theory can be used to explain the lifting method
of Andruskiewitsch and Schneider.
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project “Algebras and Representations in China and Europe” ASI/B7-301/98/679-11.
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This paper is organized as follows. In Section 2, we recall the notion of liftings
and introduce the graded bialgebra deformations, and we show that the lifting is
just the same as the graded bialgebra deformation in the sense of Theorem 2.2.
The graded-rigid bialgebras are also studied (Corollaries 2.3 and 2.4). In Section 3,
we introduce the notion of graded “hat” bialgebra cohomology groups for graded
bialgebras, which controls the graded bialgebra deformations (Theorem 3.3).

2 Liftings and Graded Bialgebra Deformations

We will work on a base field K. All unadorned tensors are over K. We refer to [13]
for graded bialgebras and filtered bialgebras, and to [7] and [9] for graded linear
maps.

Let us recall the lifting method of Andruskiewitsch and Schneider (for more
details, see [2]). Note that the lifting defined here is a slight generalization.

Throughout this paper, B = ⊕i≥0B(i) will be a graded bialgebra over K with
identity element 1B , multiplication map m, counit ε, and comultiplication ∆. Then
B has a natural bialgebra filtration

B0 ⊆ B1 ⊆ · · · ⊆ Bi ⊆ · · · ,

where Bi = ⊕j≤iB(j) for any i ≥ 0.
A lifting of the graded bialgebra B is a filtered bialgebra structure, denoted by

U , on the underlying filtered vector space B with the above filtration such that
grU = B as graded bialgebras, where grU is the graded bialgebra associated to the
filtered bialgebra U (see [13, p. 226]). (By grU = B, we use the natural identification
of the underlying space grU with B, i.e., grU(i) = Bi/Bi−1

∼= B(i) for each i ≥ 0.)
For any lifting U of the graded bialgebra B, it follows from the definition that

U and B have the same identity element and counit. Therefore, to give a lifting U ,
we just need to define the multiplication mU and comultiplication ∆U .

Two liftings U and V of the graded bialgebra B are said to be equivalent if
there is a filtered bialgebra isomorphism θ : U → V such that grθ = IdB , where grθ
is the graded morphism associated to θ, and here again we use the identifications
grU = B and grV = B (as graded bialgebras).

Denote by Lift(B) the set of equivalent classes of all the liftings of the graded
bialgebra B.

Let l ∈ N ∪ {+∞}. Consider the space B[t]/(tl+1), which is viewed as a free
module over K[t]/(tl+1), and also a graded K-space with deg t = 1 and deg b = n if
b ∈ B(n). If l = +∞, then B[t]/(tl+1) means B[t] and K[t]/(tl+1) means K[t].

An l-th level graded bialgebra deformation of B consists of

ml
t : (B ⊗B)[t]/(tl+1) → B[t]/(tl+1)

and

∆l
t : B[t]/(tl+1) → (B ⊗B)[t]/(tl+1) ∼= B[t]/(tl+1)⊗K[t]/(tl+1) B[t]/(tl+1),

which are K[t]/(tl+1)-linear and homogeneous maps of degree zero such that
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(i) B[t]/(tl+1) is a bialgebra over K[t]/(tl+1) with identity element 1B , multiplica-
tion ml

t, counit εl
t and comultiplication ∆l

t, where the counit εl
t : B[t]/(tl+1) →

K[t]/(tl+1) is given by εl
t(bt

j) = ε(b)tj for b ∈ B and 0 ≤ j ≤ l;
(ii) ml

t ≡ m⊗ IdK[t]/(tl+1) and ∆l
t ≡ ∆⊗ IdK[t]/(tl+1) mod (t), where m and ∆ are

the multiplication and comultiplication of B, respectively.
Denote by (B[t]/(tl+1),ml

t,∆
l
t) the above l-th level graded bialgebra deformation.

From now on, we will abbreviate l-th level graded bialgebra deformations as
l-deformations, and +∞-deformations will be referred simply as deformations. De-
note by E l(B) the set of all l-deformations of the graded bialgebra B, and E+∞(B)
is written as E(B). Elements of E(B) will be written as the form (B[t],mt,∆t).

Two l-deformations (B[t]/(tl+1),ml
t,∆

l
t) and (B[t]/(tl+1),m′l

t,∆
′l
t) are said to

be isomorphic if there exists an isomorphism of K[t]/(tl+1)-bialgebras

φ : (B[t]/(tl+1),ml
t,∆

l
t) → (B[t]/(tl+1),m′l

t,∆
′l
t)

such that φ is homogeneous of degree zero and φ ≡ IdB ⊗ IdK[t]/(tl+1) mod (t).
Denote by iso E l(B) (resp., iso E(B)) the set of isoclasses of l-deformations

(resp., deformations) of the graded bialgebra B for l ∈ N.
Consider an element (B[t]/(tl+1),ml

t,∆
l
t) of E l(B). By definition, we can write

ml
t(a⊗ b) =

∑

0≤s≤l

ms(a⊗ b)ts (1)

and
∆l

t(c) =
∑

0≤s≤l

∆s(c)ts, (2)

where a, b, c ∈ B, and ms : B ⊗ B → B and ∆s : B → B ⊗ B are homogeneous of
degree −s. Note that m0 = m and ∆0 = ∆.

It is easy to check that the associativity of ml
t, the compatibility of ml

t and ∆l
t,

and the coassociativity of ∆l
t are respectively equivalent to the following identities

for each 1 ≤ n ≤ l:

amn(b⊗ c)−mn(ab⊗ c) + mn(a⊗ bc)−mn(a⊗ b)c
=

∑
1≤s≤n−1

ms(mn−s(a⊗ b)⊗ c)−ms(a⊗mn−s(b⊗ c)), (3)

mn(a(1) ⊗ b(1))⊗ a(2)b(2) −∆(mn(a⊗ b)) + a(1)b(1) ⊗mn(a(2) ⊗ b(2))
+ a(1)bl ⊗ a(2)br −∆n(ab) + alb(1) ⊗ arb(2)

= − ∑
0≤s,r,s′,r′≤n−1, s+s′+r+r′=n

(mr ⊗mr′) ◦ τ23 ◦ (∆s ⊗∆s′)(a⊗ b)

+
∑

1≤s≤n−1

∆s(mn−s(a⊗ b)),

(4)

and

c(1) ⊗∆n(c(2))− (∆⊗ Id) ◦∆n(c) + (Id⊗∆) ◦∆n(c)−∆n(c(1))⊗ c(2)

=
∑

1≤s≤n−1

(∆n−s ⊗ Id) ◦∆s(c)− (Id⊗∆n−s) ◦∆s(c), (5)
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where we use Sweedler’s notation ∆(a) = a(1)⊗a(2) for a ∈ B, in the second identity
we use the notation ∆n(a) = al ⊗ ar and ∆n(b) = bl ⊗ br, and the map τ23 is the
canonical flip map at the second and third positions.

Let (B[t]/(tl+1),ml
t,∆

l
t) and (B[t]/(tl+1),m′l

t,∆
′l
t) be two l-deformations with

the maps ms, ∆s and m′
s, ∆′

s as in (1) and (2). An isomorphism φ between these
deformations is given by

φ(a) =
∑

0≤s≤l

φs(a)ts, a ∈ B,

where φs : B → B is a homogeneous map of degree −s. Note that φ0 = IdB .
The fact that φ is a morphism of K[t]/(tl+1)-bialgebras implies that φ preserves the
identity element 1B and counit εl

t, and for each 1 ≤ n ≤ l,

(mn −m′
n)(a⊗ b)

= aφn(b)− φn(ab) + φn(a)b
+

∑
0<s<n

{
φs(a)φn−s(b)− φs(mn−s(a⊗ b)) +

∑
r+r′=n−s

m′
s(φr(a)⊗ φr′(b))

}

and

(∆n −∆′
n)(c)

= ∆(φn(c))− c(1) ⊗ φn(c(2))− φn(c(1))⊗ c(2)

+
∑

0<s<n

{
∆′

s(φn−s(c))− (φs ⊗ φn−s)(∆(c))− ∑
r+r′=n−s

(φr ⊗ φr′)(∆s(c))
}

for all a, b, c ∈ B. Note that the above discussion works for all l ∈ N ∪ {+∞}.
The analogue of the following lemma is well known in the classical deformation

theory.

Lemma 2.1. There exist restriction maps rl,l′ : E l(B) → E l′(B) for any l > l′ ∈ N
and maps rl : E(B) → E l(B) such that E(B) = lim

←−−
l∈N

E l(B).

Proof. Given (B[t]/(tl+1),ml
t,∆

l
t) in E l(B) with maps ms and ∆s as in (1) and (2),

define ml′
t :=

∑
0≤s≤l′ mst

s and ∆l′
t :=

∑
0≤s≤l′ ∆st

s; it is direct to check that
(B[t]/(tl

′+1),ml′
t ,∆l′

t ) is the desired element in E l′(B). The map rl is defined in a
similar way, and then the result is obvious. ¤

A graded bialgebra B = ⊕i≥0B(i) is called graded-rigid if the set iso E(B) has
only one element, i.e., any deformation of B is isomorphic to the trivial one.

We have the following observation, which says that the graded bialgebra defor-
mations coincide with the liftings.

Theorem 2.2. Let B = ⊕i≥0 B(i) be a graded bialgebra. There exists a natural
bijection Lift(B) ' iso E(B).

Proof. We will construct a map F : Lift(B) → iso E(B). Given a lifting U of B, de-
note by mU and ∆U the multiplication and comultiplication maps of U , respectively.
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Since U is a filtered bialgebra, we have

mU : Bi ⊗Bj → Bi+j and ∆U : Bn →
∑

i+j=n

Bi ⊗Bj .

Therefore, for any s ≥ 0, there uniquely exist homogeneous maps of degree −s, say
ms : B ⊗B → B and ∆s : B → B ⊗B such that

mU (a⊗ b) =
∑

s≥0

ms(a⊗ b) and ∆U (c) =
∑

s≥0

∆s(c).

Since grU = B as graded bialgebras, we have m0 = m and ∆0 = ∆.
Now define F (U) = (B[t],mt,∆t) as follows:

mt(a⊗ b) :=
∑

s≥0

ms(a⊗ b)ts and ∆t(c) :=
∑

s≥0

∆s(c)ts.

It is direct to check that F (U) is a deformation.
The map F is well defined, i.e., it maps equivalent liftings to isomorphic de-

formations. In fact, for given liftings U and V , an equivalence θ of U and V is a
filtered isomorphism, hence for any s ≥ 0, it determines a unique homogeneous map
φs : B → B of degree −s such that θ(a) =

∑
s≥0 φs(a) for a ∈ B. Then we can

define a K[t]-linear map φ : B[t] → B[t] such that φ(a) =
∑

s≥0 φs(a)ts. Hence, φ
is an isomorphism between the deformations F (U) and F (V ).

By (1) and (2), one obtains that F is a bijection. This completes the proof. ¤

An immediate consequence of Theorem 2.2 is:

Corollary 2.3. Let B = ⊕i≥0B(i) be a graded bialgebra. If B is graded-rigid, then
for any filtered bialgebra U such that grU ' B as graded bialgebras, we have U ' B
as bialgebras. If we assume B is coradically-graded, then the converse is also true.

Proof. By Theorem 2.2, B is graded-rigid if and only if Lift(B) is a single-element
set, i.e., every lifting of B is trivial.

For the first statement, such a filtered bialgebra U with grU ' B gives rise
to a lifting on B, denoted by U ′, such that U ' U ′ (as bialgebras). Since B is
graded-rigid, we get U ′ ' B, thus we are done.

For the second one, assume B is coradically-graded. Let U be a lifting of B.
By assumption, there exists an isomorphism θ : U ' B. Note that θ preserves the
coradical filtration, thus grθ can be viewed as a graded automorphism of B. Take
θ′ = (grθ)−1 ◦ θ : U ' B. Then θ′ realizes an equivalence between the lifting U and
the trivial lifting. This proves that B is graded-rigid. ¤

We assume the base field K is algebraically closed of characteristic zero. One
can define the variety Bialgn of the bialgebra structures on n-dimensional spaces,
which carries a natural GLn(K)-action by base changes (see [8] and [12]). Recall
that a bialgebra B is called rigid if the GLn(K)-orbit of Bialgn containing B is
Zariski open. In fact, we have:
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Corollary 2.4. Let K be an algebraically closed field of characteristic zero, and
B = ⊕i≥0 B(i) a finite-dimensional graded bialgebra over K. If B is rigid and
coradically-graded, then B is graded-rigid.

Proof. By Corollary 2.3, we only need to show that every filtered bialgebra U with
grU ' B is isomorphic to B. Assume the dimension of B is n. By Theorem 3.4
in [8], B is a degeneration of U , i.e., it lies in the closure of the orbit of U (in the
variety Bialgn). However, the GLn(K)-orbit of B is open, we obtain that B and U
belong to the same GLn(K)-orbit, i.e., B ' U as bialgebras, finishing the proof. ¤

3 Graded Bialgebra Cohomology

In this section, we will relate the graded bialgebra deformations with the corre-
sponding cohomology groups, which will be a graded (and normalized) version of
“hat” bialgebra cohomology groups introduced in [5] (see also [10]).

Let (B,m, e,∆, ε) be a bialgebra.
Let us recall the bicomplex in [5] or [10, p. 619]. For p, q ≥ 1, let the maps

λp : B⊗p+1 → B⊗p and ρp : B⊗p+1 → B⊗p be given by

λp(b1 ⊗ · · · ⊗ bp+1) = b1
(1)b

2 ⊗ · · · ⊗ b1
(p)b

p+1,

ρp(b1 ⊗ · · · ⊗ bp+1) = b1bp+1
(1) ⊗ · · · ⊗ bpbp+1

(p) .

Dually, the maps σq : B⊗q → B⊗q+1 and τ q : B⊗q → B⊗q+1 are given by

σq(b1 ⊗ · · · ⊗ bq) = (b1
(1) · · · bq

(1))⊗ b1
(2) ⊗ · · · bq

(2),

τ q(b1 ⊗ · · · ⊗ bq) = b1
(1) ⊗ · · · ⊗ bq

(1) ⊗ (b1
(2) · · · bq

(2)).

In addition, we define ∆p
i : B⊗p → B⊗p+1 and µq

j : B⊗q+1 → B⊗q for 1 ≤ i ≤ p
and 1 ≤ j ≤ q by

∆p
i (b

1 ⊗ · · · ⊗ bp) = b1 ⊗ · · · ⊗ bi
(1) ⊗ bi

(2) ⊗ · · · ⊗ bp,

µq
i (b

1 ⊗ · · · ⊗ bq+1) = b1 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bq+1.

Let Cp,q = HomK(B⊗q, B⊗p), p, q ≥ 1. Define

δp,q
h : Cp,q → Cp,q+1 and δp,q

c : Cp,q → Cp+1,q

by

δp,q
h (f) = λp ◦ (Id⊗ f) +

q∑
i=1

(−1)if ◦ µq
i + (−1)q+1ρp ◦ (f ⊗ Id),

δp,q
c (f) = (Id⊗ f) ◦ σq +

p∑
j=1

(−1)j∆p
j ◦ f + (−1)p+1(f ⊗ Id) ◦ τ q

for f ∈ Cp,q, where Id denotes the identity map of B.
It is direct to check that (Cp,q, δp,q

h , δp,q
c ) is a bicomplex (see [10, p. 619]), i.e.,

δp,q+1
h ◦ δp,q

h = 0, δp,q+1
c ◦ δp,q

h = δp+1,q
h ◦ δp,q

c , δp+1,q
c ◦ δp,q

c = 0.
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We will introduce a sub-bicomplex of the above bicomplex. Let m = Ker ε.
Denote by i : m → B the inclusion map, and π : B→ m is given by π(b) = b−ε(b)1B .
Set Dp,q = HomK(m⊗q,m⊗p), p, q ≥ 1. Note that we have a natural embedding
Dp,q ↪→ Cp,q by identifying f ∈ Dp,q with i⊗p ◦ f ◦ π⊗q ∈ Cp,q.

Lemma 3.1. We have δp,q
h (Dp,q) ⊆ Dp,q+1 and δp,q

c (Dp,q) ⊆ Dp+1,q.

Proof. Just note that f ∈ Cp,q lies in Dp,q if and only if

(Id⊗j−1 ⊗ ε⊗ Id⊗p−j) ◦ f = 0

and
f(b1 ⊗ · · · ⊗ bi−1 ⊗ 1⊗ bi+1 ⊗ · · · ⊗ bq) = 0

for any 1 ≤ i ≤ q, 1 ≤ j ≤ p and any bi ∈ B. Then the lemma follows from the
definition of δp,q

h and δp,q
c immediately. ¤

From now on, B = ⊕i≥0B(i) will be a graded bialgebra. In this case, m ⊆ B is a
graded subspace. Consider Dp,q

(l) := HomK(m⊗q,m⊗p)(l), l ∈ Z, whose elements are
homogeneous maps from m⊗q to m⊗p of degree l. Note that Dp,q

(l) ⊆ Dp,q ↪→ Cp,q.

Lemma 3.2. We have δp,q
h (Dp,q

(l) ) ⊆ Dp,q+1
(l) and δp,q

c (Dp,q
(l) ) ⊆ Dp+1,q

(l) for any l ∈ Z
and p, q ≥ 1.

Proof. Set Cp,q
(l) = HomK(B⊗q, B⊗p)(l). Clearly, Dp,q

(l) = Dp,q ∩ Cp,q
(l) . From the

definition of δp,q
h and δp,q

c , one sees that they preserve the degree, i.e., δp,q
h (Cp,q

(l) ) ⊆
Cp,q+1

(l) and δp,q
c (Cp,q

(l) ) ⊆ Cp+1,q
(l) . Now the result follows from Lemma 3.1. ¤

Denote by δp,q
h,(l) (resp., δp,q

c,(l)) the restriction of the map δp,q
h (resp., δp,q

c ) to the
subspace Dp,q

(l) . Thus, by Lemma 3.2, we get a bicomplex (Dp,q
(l) , δp,q

h,(l), δ
p,q
c,(l)) for each

l ∈ Z.
There is a canonical way to construct a complex from a given bicomplex. For

n ≥ 1, set
D̂n

(l) =
⊕

p+q=n+1, p,q≥1

Dp,q
(l) ,

and define ∂n
(l) : D̂n

(l) → D̂n+1
(l) by ∂n

(l)|Dn+1−q,q

(l)
:= δp,q

h,(l) + (−1)qδp,q
c,(l) for 1 ≤ q ≤ n.

Hence, for each l ∈ Z, we get a complex

0 → D̂1
(l)

∂1
(l)−→ D̂2

(l)

∂2
(l)−→ D̂3

(l)

∂3
(l)−→ D̂4

(l) → · · · .

For n ≥ 1, we define the n-th cohomology group of the above complex to be the
n-th graded “hat” bialgebra cohomology of degree l of the graded bialgebra B, which
will be denoted by ĥn

b (B)(l).
It is very useful to write out ĥ2

b(B)(l) and ĥ3
b(B)(l) explicitly from the definition.

In what follows, we will use δp,q
h and δp,q

c instead of δp,q
h,(l) and δp,q

c,(l) for simplicity.
We have the following facts:
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The cohomology group ĥ2
b(B)(l) consists of all pairs (f, g), where f : m⊗m → m

and g : m → m ⊗ m are homogeneous maps of degree l, satisfying the following
relations:

δ1,2
h (f) = 0, δ1,2

c (f) + δ2,1
h (g) = 0, δ2,1

c (g) = 0,

i.e., for any a, b, c ∈ m, we have

af(b⊗ c)− f(ab⊗ c) + f(a⊗ bc)− f(a⊗ b)c = 0, (6)

f(a(1) ⊗ b(1))⊗ a(2)b(2) −∆(f(a⊗ b)) + a(1)b(1) ⊗ f(a(2) ⊗ b(2))
+ a(1)g(b)l ⊗ a(2)g(b)r − g(ab) + g(a)lb(1) ⊗ g(a)rb(2) = 0,

(7)

c(1) ⊗ g(c(2))− (∆⊗ Id)(g(c)) + (Id⊗∆)(g(c))− g(c(1))⊗ c(2) = 0, (8)

where we write g(b) = g(b)l ⊗ g(b)r for b ∈ B.
Two pairs (f, g) and (f ′, g′) are equal in ĥ2

b(B)(l) if and only if there exists a
homogeneous map θ : m → m of degree l such that for any a, b, c ∈ m,

(f − f ′)(a⊗ b) = aθ(b)− θ(ab) + θ(a)b, (9)

(g − g′)(c) = ∆(θ(c))− c(1) ⊗ θ(c(2))− θ(c(1))⊗ c(2). (10)

The group ĥ3
b(B)(l) consists of all triples (F, H,G), where F : m⊗m⊗m → m,

H : m⊗m → m⊗m, G : m → m⊗m⊗m are homogeneous maps of degree l, subject
to the relations

δ1,3
h (F ) = 0, δ2,2

h (F ) = δ1,3
c (H), δ2,2

c (H) = −δ1,3
h (G), δ3,1

c (G) = 0.

Note that (F, H,G) = 0 in ĥ3
b(B)(l) if and only if there exists (f, g) ∈ D̂2

(l) such that

(F, H,G) = ∂2
(l)((f, g)), (11)

which can be written out explicitly by the definition of ∂2
(l).

Now we are in the position to present our main observations, which relate the
graded bialgebra deformations of the graded bialgebra B with the cohomology
groups ĥ2

b(B)(l) and ĥ3
b(B)(l) (compare [5, Section 5]).

Theorem 3.3. Let B = ⊕i≥0B(i) be a graded bialgebra.

(i) There is a bijection between iso E1(B) and ĥ2
b(B)(−1).

(ii) If ĥ2
b(B)(−l) = 0 for each l ≥ 1, then the graded bialgebra B is graded-rigid.

(iii) For l ≥ 1, the obstruction to extend an element of E l(B) to E l+1(B) lies in
ĥ3

b(B)(−l−1). In particular, if ĥ3
b(B)(−l−1) = 0, one can extend any element

of E l(B) to E l+1(B).

Proof. (i) Recall that an element in E1(B) is of the form (B[t]/(t2),m1
t ,∆

1
t ). Write

m1
t (a⊗ b) = ab + f(a⊗ b)t and ∆1

t (c) = ∆(c) + g(c)t,
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where f : B ⊗ B → B and g : B → B ⊗ B are homogeneous of degree −1. Note
that 1B is the identity element of B[t]/(t2), hence f(1B ⊗ b) = f(b⊗ 1B) = 0 for all
b ∈ B. Moreover, for a, b ∈ m, ε1

t (m
1
t (a⊗ b)) = 0 implies ε1

t (ab+ f(a⊗ b)t) = 0, i.e.,
f(a⊗ b) ∈ m. Thus, we may view f as in D1,2

(−1). Dually, one can show g ∈ D2,1
(−1).

Note that m1
t is an associative multiplication on B[t]/(t2), thus we get

f(a⊗ b)c− f(a⊗ bc) + f(ab⊗ c)− af(b⊗ c) = 0

for all a, b, c ∈ B. Therefore, we get (6). Similarly, the fact that ∆1
t is an algebra

morphism (resp., ∆1
t is a coassociative comultiplication) gives (7) (resp., (8)), i.e.,

(f, g) can be viewed as an element in ĥ2
b(B)(−1).

Suppose that (B[t]/(t2),m1
t ,∆

1
t ) and (B[t]/(t2),m′1

t ,∆
′1
t ) are two isomorphic

deformations, with (f, g) and (f ′, g′) defined as above. Let φ be the isomorphism.
We may write

φ(a) = a + θ(a)t, a ∈ B

for some homogeneous map θ : B → B of degree −1 (note that the map θ may
be viewed as a map from m to m). Now it is direct to check that θ realizes an
equivalence of (f, g) and (f ′, g′) in ĥ2

b(B)(−1). Hence, we have obtained a map from
E1(B) to ĥ2

b(B)(−1) sending (B[t]/(t2),m1
t ,∆

1
t ) to (f, g). One can easily see that

the correspondence is bijective, as required.

(ii) To prove that B is graded-rigid, we just need to show that iso E(B) is a
single-element set.

Let (B[t],mt,∆t) be an element in E(B). As before, write

mt(a⊗ b) =
∞∑

s=0

ms(a⊗ b)ts and ∆t(c) =
∞∑

s=0

∆s(c)ts.

Note that m0 = m, ∆0 = ∆, and ms, ∆s are homogeneous maps of degree −s. By
a similar argument as (i), we may view ms ∈ D1,2

(−s) and ∆s ∈ D2,1
(−s). Moreover,

from (i), we see that (m1,∆1) can be viewed as an element in ĥ2
b(B)(−1). Now by

assumption, there exists a homogeneous map θ1 : m → m of degree −1 such that
(see (9) and (10)):

m1(a⊗ b) = aθ1(b)− θ1(ab) + θ1(a)b,
∆1(c) = ∆(θ1(c))− c(1) ⊗ θ1(c(2))− θ1(c(1))⊗ c(2).

Take φ1 : B[t] → B[t] to be a K[t]-linear map such that

φ1(a) = a + θ1(a)t, a ∈ B.

Note that φ1 is a bijective map preserving the identity 1B and counit εt. Consider
the deformation

(B[t], mt
′ = φ1 ◦mt ◦ (φ−1

1 ⊗ φ−1
1 ), ∆t

′ = (φ1 ⊗ φ1) ◦∆t ◦ φ−1
1 ).
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We have
mt

′(a⊗ b) = ab + m2
′(a⊗ b)t2 + m3

′(a⊗ b)t3 + · · · ,
∆t

′(c) = ∆(c) + ∆2
′(c)t2 + ∆2

′(c)t3 + · · · ,

where ms
′ and ∆s

′ are homogeneous maps of degree −s, s ≥ 2. Now by compar-
ing (3)–(5) with (6)–(8), we see that (m2

′,∆2
′) can be viewed as an element in

ĥ2
b(B)(−2). Hence, there exists a homogeneous map θ2 : m → m of degree −2 such

that (again see (9) and (10))

m2
′(a⊗ b) = aθ2(b)− θ2(ab) + θ2(a)b,
∆2

′(c) = ∆(θ2(c))− c(1) ⊗ θ2(c(2))− θ2(c(1))⊗ c(2).

Take φ2 : B[t] → B[t] to be a K[t]-linear map such that

φ2(a) = a + θ2(a)t2, a ∈ B.

Now consider the following deformation

(B[t], mt
′′ = φ2 ◦mt

′ ◦ (φ−1
2 ⊗ φ−1

2 ), ∆t
′′ = (φ2 ⊗ φ2) ◦∆t

′ ◦ φ−1
2 ),

whose coefficients of t and t2 vanish. In other words,

mt
′′(a⊗ b) = ab + m3

′′(a⊗ b)t3 + m3
′′(a⊗ b)t4 + · · · ,

∆t
′′(c) = ∆(c) + ∆3

′′(c)t3 + ∆2
′′(c)t4 + · · · .

Similarly, we may view (m3
′′,∆3

′′) as in ĥ2
b(B)(−3). By assumption and comparing

(6)–(8), we have a homogeneous map θ3 : m → m such that

m3
′′(a⊗ b) = aθ3(b)− θ3(ab) + θ3(a)b,
∆3

′′(c) = ∆(θ3(c))− c(1) ⊗ θ3(c(2))− θ3(c(1))⊗ c(2).

Now define φ3 : B[t] → B[t] to be a K[t]-linear map such that

φ3(a) = a + θ3(a)t3, a ∈ B.

Thus, we get the following deformation

(B[t], mt
′′′ = φ3 ◦mt

′′ ◦ (φ−1
3 ⊗ φ−1

3 ), ∆t
′′′ = (φ3 ⊗ φ3) ◦∆t

′′ ◦ φ−1
3 ),

whose coefficients of t, t2 and t3 vanish. Now one can define θ4 and φ4, and so on.
Finally, define the infinite composition · · · ◦ φ3 ◦ φ2 ◦ φ1 as φ. Note that the

K[t]-linear isomorphism φ : B[t] → B[t] is well defined for every a ∈ B, which
preserves the identity 1B and counit εt. In fact, φs(a) = a + θs(a)ts, where θs :
m → m is homogeneous of degree −s, hence for each fixed a ∈ B(i), φs(a) = a for
s ≥ i. Consequently, φ(a) has nonzero coefficients of ts only for 0 ≤ s ≤ i. By the
construction of each map φs, we obtain that the deformation

(B[t], φ ◦mt ◦ (φ−1 ⊗ φ−1), (φ⊗ φ) ◦∆t ◦ φ−1)
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is trivial, which is also equivalent to the given deformation. Thus, (ii) is proved.
(iii) Let (B[t]/(tl+1),ml

t,∆
l
t) be an element in E l(B). Write

ml
t(a⊗ b) =

∑

0≤s≤l

ms(a⊗ b)ts and ∆l
t(c) =

∑

0≤s≤l

∆s(c)ts,

where ms and ∆s are homogeneous maps of degree −s. By the same argument as
above, one can show that ms (resp., ∆s) can be viewed as a map from m⊗m to m
(resp., from m to m⊗m).

To extend (B[t]/(tl+1),ml
t,∆

l
t) to some element in E l+1(B), we just need to find

some homogeneous maps f : m ⊗ m → m and g : m → m ⊗ m of degree −(l + 1)
such that (B[t]/(tl+2),ml

t + tl+1f,∆l
t + tl+1g) is a bialgebra over K[t]/(tl+2).

The associativity of ml
t + tl+1f is equivalent to

(ml
t + tl+1f)

(
((ml

t + tl+1f)(a⊗ b))⊗ c
)

= (ml
t + tl+1f)

(
a⊗ ((ml

t + tl+1f)(b⊗ c))
)

for all a, b, c ∈ B. Since ml
t is associative, the above identity holds if and only if the

two sides have the same coefficient of the term tl+1. Thus, by direct computation,
we get

F (a⊗ b⊗ c) : =
l∑

s=1
ms(ml+1−s(a⊗ b)⊗ c)−ms(a⊗ml+1−s(b⊗ c))

= af(b⊗ c)− f(ab⊗ c) + f(a⊗ bc)− f(a⊗ b)c

= δ1,2
h (f)(a⊗ b⊗ c).

Similarly, the compatibility of the multiplication ml
t+tl+1f and comultiplication

∆l
t + tl+1g, and the coassociativity of ∆l

t + tl+1g are respectively equivalent to the
following two identities:

H(a⊗ b) : =
l∑

s=1
∆s(ml+1−s(a⊗b))− ∑

s+r+s′+r′=l+1

(ms′⊗mr′) ◦ τ23(∆s(a)⊗∆r(b))

= (δ1,2
c (f) + δ2,1

h (g))(a⊗ b),

G(c) : =
l∑

s=1
(∆s ⊗ Id) ◦∆l+1−s(c)− (Id⊗∆s) ◦∆l+1−s(c)

= c(1) ⊗ g(c(2))− (∆⊗ Id)(g(c)) + (Id⊗∆)(g(c))− g(c(1))⊗ c(2)

= δ2,1
c (g)(c),

where a, b, c ∈ m, and τ23 is the flip map with respect to the second and third
positions.

It is direct to check that the element (F, H,G) ∈ D̂(−l−1) is a cocycle (exactly
as [4] in the case of algebras and [6] in the case of non-graded bialgebras), i.e., it
lies in the kernel of the differential ∂3

(−l−1) from (3)–(5), therefore, it can be viewed

as an element in the cohomology group ĥ3
b(B)(−l−1). By comparing the above three
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identities with (11), we obtain that if ĥ3
b(B)(−l−1) = 0, then such maps f and g

always exist, i.e., we can extend (B[t]/(tl+1),ml
t,∆

l
t) to

(B[t]/(tl+2), ml
t + tl+1f, ∆l

t + tl+1g),

which lies in E l+1(B) by the above three equivalences. This completes the proof. ¤
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